Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: DLR Site ID: 1246 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Site Information

Desc. By: Rogers, Gary Locality:

 Date Desc.:
 02/07/92
 Elevation:
 360 metres

 Map Ref.:
 Sheet No.: 8059 GPS
 Rainfall:
 No Data

 Northing/Long.:
 7854204 AMG zone: 55
 Runoff:
 Very slow

Easting/Lat.: 376068 Datum: AGD66 Drainage: Imperfectly drained

<u>Geology</u>

ExposureType: No Data Conf. Sub. is Parent. Mat.: No Data

Geol. Ref.: No Data Substrate Material: Undisturbed soil core, No Data

Land Form

Rel/Slope Class:Level plain <9m <1%</th>Pattern Type:PlainMorph. Type:FlatRelief:No DataElem. Type:PlainSlope Category:LevelSlope:1 %Aspect:No Data

Surface Soil Condition (dry): Hardsetting

Erosion:

Soil Classification

Australian Soil Classification:Mapping Unit:N/AEutrophic Subnatric Grey Sodosol Medium Non-gravelly Clay-Principal Profile Form:Dd2.43

loamy Clayey Very deep

ASC Confidence: Great Soil Group: Solodic soil

All necessary analytical data are available.

<u>Site Disturbance:</u> No effective disturbance other than grazing by hoofed animals

Vegetation: Low Strata - Tussock grass, 0.26-0.5m, Sparse. *Species includes - Chrysopogon fallax, Bothriochloa species,

Dichanthium species Mid Strata - , , . *Species includes - None recorded

Tall Strata - Tree, 3.01-6m, Mid-dense. *Species includes - Eucalyptus platyphylla, Eucalyptus polycarpa,

clay; Strong grade of structure, 20-50 mm, Subangular blocky; Smooth-ped fabric; , Calcareous,

Eucalyptus

papuana

Surface Coarse Fragments: No surface coarse fragments

Profile Morphology

Α1 0 - 0.06 m Dark grey (10YR4/1-Moist); ; Fine sandy clay loam; Massive grade of structure; Earthy fabric; , Calcareous, , ; , Gypseous, , ; Field pH 6 (Raupach, 0.03); Abrupt change to -A2e 0.06 - 0.15 m Dark greyish brown (10YR4/2-Moist); ; Fine sandy clay loam; Massive grade of structure; Earthy fabric; , Calcareous, , ; , Gypseous, , ; Field pH 6.5 (Raupach, 0.1); Abrupt change to -B21 Very dark grey (10YR3/1-Moist); ; Medium clay; Moderate grade of structure, 10-20 mm, 0.15 - 0.35 m Subangular blocky; Smooth-ped fabric; , Calcareous, , ; , Gypseous, , ; Field pH 6 (Raupach, 0.2); Clear change to -**B22** 0.35 - 1.1 m Dark greyish brown (2.5Y4/2-Moist); ; Light medium clay; Moderate grade of structure, 5-10 mm, Polyhedral; Smooth-ped fabric; Very few (0 - 2 %), Calcareous, Coarse (6 - 20 mm), Nodules; Gypseous, , ; Field pH 8.5 (Raupach, 0.7); Gradual change to -**B23** 1.1 - 1.8 m Dark grey (10YR4/1-Moist); Mottles, 10YR46, 2-10%, Prominent; Mottles, 2-10%; Light medium clay; Strong grade of structure, 20-50 mm, Subangular blocky; Moderate grade of structure, Lenticular; Smooth-ped fabric; Few cutans, <10% of ped faces or walls coated; , Calcareous, , ; , Gypseous, , ; Field pH 8.5 (Raupach, 1.5); Gradual change to -Dark grey (10YR4/1-Moist); Mottles, 10YR46, 10-20%, Distinct; Mottles, 10-20%; Light medium **B24** 1.8 - 2.1 m

, ; , Gypseous, , ; Field pH 8.5 (Raupach, 2);

Morphological Notes

Observation Notes

Site Notes

Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD DLR Site ID: 1246 Observation ID: 1

Project Name: Project Code: Agency Name: DLR Site ID: 1246
QLD Department of Primary Industries

Laboratory Test Results:

and the state of t										
Depth	рН	1:5 EC		nangeable Mg	e Cations K	Ex Na	changeable Acidity	CEC	ECEC	ESP
m		dS/m		9		Cmol (+)/l				%
0.06 - 0.15	6.8A		8.1B	2.7	0.55	1.6				
0.15 - 0.35 0.35 - 1.1	6.7A 8A		17B	6.3	0.5	9.3				
Donath	0-000	0	A!!	T-4-1	Tatal	Tatal	D. II.	D-mi-l	. 0:	Amakasia
Depth	CaCO3	Organic C	Avail. P	Total P	Total N	Total K	Bulk Density	Particl GV CS		Analysis Silt Clay
m	%	%	mg/kg	%	%	%	Mg/m3	0, 00	%	One Olay
0.06 - 0.15										
0.15 - 0.35										
0.35 - 1.1										
Depth	COLE		Gravimetric/Volumetric Water Contents					H	(sat	K unsat
		Sat.	0.05 Bar		0.5 Bar	1 Bar	5 Bar 15	Bar	_	_
m				g	/g - m3/m3	3		n	nm/h	mm/h
0.06 - 0.15										
0.45 0.05										

0.15 - 0.35 0.35 - 1.1

Project Name: Preliminary Assessment and Survey of Land Degradation in the Dalrypmle Shire, QLD

Project Code: Site ID: 1246 Observation ID: 1

Agency Name: QLD Department of Primary Industries

Laboratory Analyses Completed for this profile

10B

Extractable sulfur(mg/kg) - Phosphate extractable sulfur Exchangeable bases (Ca2+,Mg2+,Na+,K+) - 1M ammonium chloride at pH 7.0, pretreatment for 15A2_CA

soluble salts

15A2_K Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts 15A2_MG 15A2_NA Exchangeable bases- 1M ammonium chloride at pH 7.0, pretreatment for soluble salts

Exchangeable sodium percentage (ESP) pH of 1:5 soil/water suspension 15N1

4A1